DARPATech 2000

Robust Passive Sonar

Dr. Thomas J. Green, Jr. Program Manager September 2000

DARPA Anti-Submarine Warfare (ASW) (ASW) (ASW)

Cold War ASW

Current Littoral ASW

- Shallow water coastal regions
- Multipath propagation with significant attenuation
- Quiet diesel-electric submarines
- Significant shipping noise interference
- Dynamic engagements

Littoral ASW Implications

Strait of Korea

September

Average Ambient Noise Spectrum Levels (Wenz, 1962)

Loss of sensitivity due to heavy shipping density can produce dramatic reductions in detection range

Matched Field Processing (MFP) ATO

- Steering vector derived from propagation model
- Exploits channel multipath for detection/localization
- Adaptivity rejects interference and reduces sidelobes
- Main issues
 - Robustness to environmental uncertainty
 - Estimating scene statistics with limited snapshots

Santa Barbara Channel Experiment (SBCX)

Objectives:

- Establish fundamental limits to signal and noise gains with Adaptive Matched Field Processing (AMFP) for passive broadband detection, localization, and classification
- Extrapolate measured performance to other threats, environments, and sensors of interest

Adaptive Target Localization with Surface Ship Interference

AMFP utilizes adaptivity and environmental knowledge to provide correct localization of weaker, submerged source in the presence of surface interference

Adaptive MFP with Mode Filtering

- Modal filtering is designed to remove energy from surface interference while retaining submerged source
 - Lessens requirements for adaptive snapshot support
 - Broadens MFP beam, decreasing losses from motion and environmental mismatch

Motion Compensation Processing

Actual range (GPS) 1.70 to 2.45 km

- Motion compensation matrix adjusts for phase difference and amplitude ratio of moving target as a function of time
- Compensation increases signal gain and mitigates sidelobes
 - Eliminates smearing loss of 4 dB in the interference-free scenario
 - Additional SINR gain when interferers on different tracks are de-focused

Multi-VLA Processing with Motion Compensation

Without Motion Compensation

- Tilt of single VLA gives coarse bearing
- Multiple VLA processing gives incoherent average
- Full array resolution not achieved

With Motion Compensation

- Differential Doppler across FFP baseline corrected prior to covariance estimation
- Full array resolution achieved with compensation

Data: AX2, 235 Hz

Robust Passive Sonar

Target sensors:

TB-29

- Large aperture with many elements
- Heading sensors to support advanced processing

SURTASS
Twin Line
Prototype
Sensors

Revolutionary Tactical Control for Littoral ASW: > 10 dB Gain in Figure of Merit

Approach

- Conduct system analysis for performance assessment
- Extend SBCX concepts to tactical systems
- Integrate processing techniques into end-to-end sonar
- Conduct focused sea tests and experiments
- Utilize high-quality, ground-truthed tactical data sets to verify performance

We Need Your Help!

Technology Areas

- Systems analysis
- End-to-End processing systems
- Advanced beamforming concepts
- Automation
- et al.

Procurement Plans

- Broad Agency Announcement
- Unsolicited white papers

New Ideas Needed